|
A large majority of currently-known fuels ultimately derive their energy from a small number of sources. Much of the chemical energy produced by life forms, such as fossil fuels, is derived from the utilization of solar energy through photosynthesis. Solar energy in turn is generated by the thermonuclear fusion process at the core of the sun. The radioactive isotopes used as fuel to power nuclear plants were formed in supernova explosions. Energy is at the top of of the political and economical agenda. Following objectives are essential to energy policy today: affordable access to energy; sustainable development of energy production, transport and consumption; and security of supply.
Below some impressions, useful information and references to energy sources and carriers such as chemical fuels, biofuels, hydrogen, fossil fuels, solar energy, nuclear, fission, (artifical) fusion, charcoal briquettes, and coal. New technologies are often combined (hybrid). |
<------- Light design for global energy and shadow to prevent global warming |
|
|
Or more energy by combining Hydroelectricity with floating solar panels: the sun shines on the Alto Rabagão dam in Portugal… It is a major milestone in Europe to install a floating solar farm on a hydroelectric dam located on the Alto Rabagão River in Montalegre, Portugal. Mixing hydroelectricity and solar energy could seem like an intriguing concept, but there are huge benefits of this hybrid system. |
HYDROELECTRIC POWER STATION |
It took more than 400 workers, about 10 years of underground work at a high altitude in the mountains, 17 km of clearing stones and 1.7 million m³ of excavated rock to work on this massive structure.
Nant de Drance, located in Switzerland, is one of the largest and most powerful pumped storage facility in Europe. With an output of 900 MW, it produces about 2.5 billion kWh of electricity per year. The main transformer cavern of the facility, a reinforced concrete structure excavated in the rock, is 184m long, 32m wide, and 52m high. It was designed in SCIA Engineer. |
Since the first airplane took flight over 100 years ago, virtually every aircraft in the sky has flown with the help of moving parts such as propellers, turbine blades, and fans, which are powered by the combustion of fossil fuels or by battery packs that produce a persistent, whining buzz. Now MIT engineers have built and flown the first-ever plane with no moving parts. Instead of propellers or turbines, the light aircraft is powered by an “ionic wind” — a silent but mighty flow of ions that is produced aboard the plane, and that generates enough thrust to propel the plane over a sustained, steady flight. Unlike turbine-powered planes, the aircraft does not depend on fossil fuels to fly. And unlike propeller-driven drones, the new design is completely silent. |
Researchers from MIT have flown a plane without moving parts for the first time. It is powered by an ‘ion drive’ which uses high powered electrodes to ionise and accelerate air particles, creating an ‘ionic wind’. This wind drove a 5m wide craft across a sports hall. Unlike the ion drives which have powered space craft for decades, this new drive uses air as the accelerant. The researchers say it could power silent drones. |
|
Fuel Savings of 40%+ have been recorded with the On board Hydroxy Generator! Hydrogen, as an energy source, is anticipated to become the foundation for a world-wide sustainable energy system. On-demand Hydrogen is safe to use, 100% environmentally friendly. It has many potential energy uses. The US DOT says hydrogen addition increases gas mileage using lean burn conditions, while also mitigating pollution emissions without the use of a catalytic converter. NASA says hydrogen addition in- creases flame velocity, which provides more useful pressure prior to the critical crank angle. Hydrogen can now be combined with gasoline, diesel, propane, or natural gas, and produce astonishing results. Because of the hydrogen supplement, the regular fossil fuel mixture burns more completely, thus reducing hydrocarbon emissions, while significantly increasing horsepower and improving fuel efficiency. Electric Power System introduced the 'ElectroSelf', an enabling technology for distributed energy that self-generates its own fuel. The intelligent closed-loop system stores energy from the grid or when renewables are plentiful, and instantaneously releases energy when there is a power dip or outage. The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) is a unique public private partnership supporting research, technological development and demonstration (RTD) activities in fuel cell and hydrogen energy technologies in Europe. Its aim is to accelerate the market introduction of these technologies, realising their potential as an instrument in achieving a carbon-clean energy system. |
In 2004 major European industries active in the development of hydrogen and fuel cell technologies joined the EHA and enforced this effort to create a commercial market for stationary and transport applications and a role as market leader for the European hydrogen and fuel cell sector. |
The unique membership structure has enabled the EHA to have up-close insight in local developments and to communicate important issues regarding industrial and regulatory needs to key decision makers at EU level.
Since 2008 the EHA is hosting the European Regions and Municipalities Partnership for Hydrogen and Fuel Cells.
CHIC, the Clean Hydrogen In European Cities Project, is the essential next step leading to the full market commercialization of Fuel Cell Hydrogen powered (FCH) buses. Under the motto ''Let hydrogen move you in urban transport and in building smart energy networks', the EU sustainable energy week pushed further to create a commercial hydrogen market for stationary and transport use. |
Methanol
Methanol is the simplest alcohol. With acoholische fermentation of mixtures containing pentavalent sugars methanol can arise as a byproduct. In addition to raw material in the chemical industry, methanol can also be used as an energy source, alone or admixed in fuels. Methanol is one of the substances which could be used to store chemical energy, to transport and to use to produce hydrogen for hydrogen fuel cells. Methanol is easier and safer to store and transport than hydrogen. It would in both combustion engines and can be used directly in electrical fuel cells. |
Fossil fuels are hydrocarbons, primarily coal and petroleum (liquid petroleum or natural gas including shale gas), formed from the fossilized remains of dead plants and animals by exposure to heat and pressure in the Earth's crust over hundreds of millions of years. In common parlance, the term fossil fuel also includes hydrocarbon-containing natural resources that are not derived entirely from biological sources, such as tar sands. These latter sources are properly known as mineral fuels. Modern large-scale industrial development is based on fossil fuel use, which has largely supplanted water-driven mills, as well as the combustion of wood or peat for heat. With global modernization in the 20th and 21st centuries, the growth in energy production from fossil fuels, especially gasoline derived from oil, is one of the causes of major regional and global conflicts and environmental issues. |
Nuclear fuel is any material that is consumed to derive nuclear energy. Technically speaking this definition includes all matter because any element will under the right conditions release nuclear energy, the only materials that are commonly referred to as nuclear fuels though are those that will produce energy without being placed under extreme duress. Fission |
(Artifical) Fusion
Fuels that produce energy by the process of nuclear fusion are currently not utilized by man but are the main source of fuel for stars, the most powerful energy sources in nature. Fusion fuels tend to be light elements such as hydrogen which will combine easily. In stars that undergo nuclear fusion, fuel consists of atomic nuclei that can release energy by the absorption of a proton or neutron. In most stars the fuel is provided by hydrogen, which can combine together to form helium through the proton-proton chain reaction or by the CNO cycle. When the hydrogen fuel is exhausted, nuclear fusion can continue with progressively heavier elements, although the net energy released is lower because of the smaller difference in nuclear binding energy. Once iron-56 or nickel-56 nuclei are produced, no further energy can be obtained by nuclear fusion as these have the highest nuclear binding energies. |
MOLTEN CHLORIDE FAST REACTOR
At a molten salt reactor (MSR) molten, or liquid, salts serve as both the reactor’s coolant and fuel. The MCFR design specifically requires molten chloride salt, which allows for fast spectrum operation. In the fast neutron spectrum, neutrons are not slowed down (e.g. by colliding with water or graphite) and move very quickly making the fission reaction more efficient. In MCFR cores, nuclear fission occurs and heats the fuel salts directly. The MCFR then distributes heat from the molten fuel salt through a heat exchanger to an inert salt in a second loop. Heat from the non-nuclear secondary loop is then safely used for electricity generation, process heat or thermal storage. |
|
Use over time
The first use of fuel was the combustion of wood or sticks by Homo erectus near 2 million years ago. Throughout the majority of human history fuels derived from plants or animal fat were the only ones available for human use. Charcoal, a wood derivative, has been used since at least 6,000 BCE for smelting metals. It was only supplanted by coke, derived from coal, as the forests started to became depleted around the 18th century. Charcoal briquettes are now commonly used as a fuel for barbecue cooking. Coal was first used as a fuel around 1000 BCE in China. With the development of the steam engine in 1769, coal came into more common use as a power source. Coal was later used to drive ships and locomotives. By the 19th century, gas extracted from coal was being used for street lighting in London. In the 20th century, the primary use of coal is for the generation of electricity, providing 40% of the world's electrical power supply in 2005. It can be used for energy generation by means of conversion technologies:
|